Module secfsdstools.e_collector.basecollector
Collector Base Class
Expand source code
"""
Collector Base Class
"""
import os
from abc import ABC
from typing import List, Optional, Tuple, Union
import pandas as pd
from secfsdstools.a_utils.constants import NUM_TXT, PRE_TXT, SUB_TXT
from secfsdstools.d_container.databagmodel import RawDataBag
class BaseCollector(ABC):
"""
Base class for Collector implementations
"""
def __init__(self, datapath: str,
stmt_filter: Optional[List[str]] = None,
tag_filter: Optional[List[str]] = None):
self.datapath = datapath
self.stmt_filter = stmt_filter
self.tag_filter = tag_filter
def _read_df_from_raw_parquet(self,
file: str,
filters=None) -> pd.DataFrame:
try:
return pd.read_parquet(os.path.join(self.datapath, f'{file}.parquet'),
filters=filters)
except Exception as ex:
print("Error reading file:", self.datapath, file, ex)
raise ex
def _get_pre_num_filters(self,
adshs: Optional[List[str]],
stmts: Optional[List[str]],
tags: Optional[List[str]]):
pre_filter = []
num_filter = []
if adshs:
adsh_filter_expression = ('adsh', 'in', adshs)
pre_filter.append(adsh_filter_expression)
num_filter.append(adsh_filter_expression)
if stmts:
pre_filter.append(('stmt', 'in', stmts))
if tags:
tag_filter_expression = ('tag', 'in', tags)
pre_filter.append(tag_filter_expression)
num_filter.append(tag_filter_expression)
return pre_filter, num_filter
def basecollect(self, sub_df_filter: Tuple[str, str, Union[str, List[str]]]) -> RawDataBag:
"""
basic implementation of the collect method
Args:
sub_df_filter: filter that applies directly on the sub.txt dataframe.
Returns:
RawDataBag: the loaded instance of RawDataBag
"""
sub_df = self._read_df_from_raw_parquet(file=SUB_TXT,
filters=[sub_df_filter] if sub_df_filter else None)
adshs = sub_df.adsh.to_list()
pre_filter, num_filter = self._get_pre_num_filters(adshs=adshs,
stmts=self.stmt_filter,
tags=self.tag_filter)
pre_df = self._read_df_from_raw_parquet(
file=PRE_TXT, filters=pre_filter if pre_filter else None
)
num_df = self._read_df_from_raw_parquet(
file=NUM_TXT, filters=num_filter if num_filter else None
)
# pandas pivot works better if coreg is not nan, so we set it here to a simple dash
num_df.loc[num_df.coreg.isna(), 'coreg'] = ''
return RawDataBag.create(sub_df=sub_df, pre_df=pre_df, num_df=num_df)
def collect(self) -> RawDataBag:
"""
collects the data and returns a Databag. Overwritten by subclasses
Returns:
RawDataBag: the collected Data
"""
Classes
class BaseCollector (datapath: str, stmt_filter: Optional[List[str]] = None, tag_filter: Optional[List[str]] = None)
-
Base class for Collector implementations
Expand source code
class BaseCollector(ABC): """ Base class for Collector implementations """ def __init__(self, datapath: str, stmt_filter: Optional[List[str]] = None, tag_filter: Optional[List[str]] = None): self.datapath = datapath self.stmt_filter = stmt_filter self.tag_filter = tag_filter def _read_df_from_raw_parquet(self, file: str, filters=None) -> pd.DataFrame: try: return pd.read_parquet(os.path.join(self.datapath, f'{file}.parquet'), filters=filters) except Exception as ex: print("Error reading file:", self.datapath, file, ex) raise ex def _get_pre_num_filters(self, adshs: Optional[List[str]], stmts: Optional[List[str]], tags: Optional[List[str]]): pre_filter = [] num_filter = [] if adshs: adsh_filter_expression = ('adsh', 'in', adshs) pre_filter.append(adsh_filter_expression) num_filter.append(adsh_filter_expression) if stmts: pre_filter.append(('stmt', 'in', stmts)) if tags: tag_filter_expression = ('tag', 'in', tags) pre_filter.append(tag_filter_expression) num_filter.append(tag_filter_expression) return pre_filter, num_filter def basecollect(self, sub_df_filter: Tuple[str, str, Union[str, List[str]]]) -> RawDataBag: """ basic implementation of the collect method Args: sub_df_filter: filter that applies directly on the sub.txt dataframe. Returns: RawDataBag: the loaded instance of RawDataBag """ sub_df = self._read_df_from_raw_parquet(file=SUB_TXT, filters=[sub_df_filter] if sub_df_filter else None) adshs = sub_df.adsh.to_list() pre_filter, num_filter = self._get_pre_num_filters(adshs=adshs, stmts=self.stmt_filter, tags=self.tag_filter) pre_df = self._read_df_from_raw_parquet( file=PRE_TXT, filters=pre_filter if pre_filter else None ) num_df = self._read_df_from_raw_parquet( file=NUM_TXT, filters=num_filter if num_filter else None ) # pandas pivot works better if coreg is not nan, so we set it here to a simple dash num_df.loc[num_df.coreg.isna(), 'coreg'] = '' return RawDataBag.create(sub_df=sub_df, pre_df=pre_df, num_df=num_df) def collect(self) -> RawDataBag: """ collects the data and returns a Databag. Overwritten by subclasses Returns: RawDataBag: the collected Data """
Ancestors
- abc.ABC
Subclasses
Methods
def basecollect(self, sub_df_filter: Tuple[str, str, Union[str, List[str]]]) ‑> RawDataBag
-
basic implementation of the collect method
Args
sub_df_filter
- filter that applies directly on the sub.txt dataframe.
Returns
RawDataBag
- the loaded instance of RawDataBag
Expand source code
def basecollect(self, sub_df_filter: Tuple[str, str, Union[str, List[str]]]) -> RawDataBag: """ basic implementation of the collect method Args: sub_df_filter: filter that applies directly on the sub.txt dataframe. Returns: RawDataBag: the loaded instance of RawDataBag """ sub_df = self._read_df_from_raw_parquet(file=SUB_TXT, filters=[sub_df_filter] if sub_df_filter else None) adshs = sub_df.adsh.to_list() pre_filter, num_filter = self._get_pre_num_filters(adshs=adshs, stmts=self.stmt_filter, tags=self.tag_filter) pre_df = self._read_df_from_raw_parquet( file=PRE_TXT, filters=pre_filter if pre_filter else None ) num_df = self._read_df_from_raw_parquet( file=NUM_TXT, filters=num_filter if num_filter else None ) # pandas pivot works better if coreg is not nan, so we set it here to a simple dash num_df.loc[num_df.coreg.isna(), 'coreg'] = '' return RawDataBag.create(sub_df=sub_df, pre_df=pre_df, num_df=num_df)
def collect(self) ‑> RawDataBag
-
collects the data and returns a Databag. Overwritten by subclasses
Returns
RawDataBag
- the collected Data
Expand source code
def collect(self) -> RawDataBag: """ collects the data and returns a Databag. Overwritten by subclasses Returns: RawDataBag: the collected Data """