Module secfsdstools.e_collector.basecollector

Collector Base Class

Expand source code
"""
Collector Base Class
"""
import os
from abc import ABC, abstractmethod
from typing import List, Optional, Tuple, Union

import pandas as pd

from secfsdstools.a_utils.constants import NUM_TXT, PRE_TXT, SUB_TXT
from secfsdstools.d_container.databagmodel import RawDataBag


class BaseCollector(ABC):
    """
    Base class for Collector implementations
    """

    def __init__(self, datapath: str,
                 stmt_filter: Optional[List[str]] = None,
                 tag_filter: Optional[List[str]] = None):
        self.datapath = datapath
        self.stmt_filter = stmt_filter
        self.tag_filter = tag_filter

    def _read_df_from_raw_parquet(self,
                                  file: str,
                                  filters=None) -> pd.DataFrame:
        return pd.read_parquet(os.path.join(self.datapath, f'{file}.parquet'),
                               filters=filters)

    def _get_pre_num_filters(self,
                             adshs: Optional[List[str]],
                             stmts: Optional[List[str]],
                             tags: Optional[List[str]]):
        pre_filter = []
        num_filter = []

        if adshs:
            adsh_filter_expression = ('adsh', 'in', adshs)
            pre_filter.append(adsh_filter_expression)
            num_filter.append(adsh_filter_expression)

        if stmts:
            pre_filter.append(('stmt', 'in', stmts))

        if tags:
            tag_filter_expression = ('tag', 'in', tags)
            pre_filter.append(tag_filter_expression)
            num_filter.append(tag_filter_expression)

        return pre_filter, num_filter

    def _collect(self, sub_df_filter: Tuple[str, str, Union[str, List[str]]]) -> RawDataBag:

        sub_df = self._read_df_from_raw_parquet(file=SUB_TXT,
                                                filters=[sub_df_filter] if sub_df_filter else None)
        adshs = sub_df.adsh.to_list()
        pre_filter, num_filter = self._get_pre_num_filters(adshs=adshs,
                                                           stmts=self.stmt_filter,
                                                           tags=self.tag_filter)

        pre_df = self._read_df_from_raw_parquet(
            file=PRE_TXT, filters=pre_filter if pre_filter else None
        )

        num_df = self._read_df_from_raw_parquet(
            file=NUM_TXT, filters=num_filter if num_filter else None
        )

        # pandas pivot works better if coreg is not nan, so we set it here to a simple dash
        num_df.loc[num_df.coreg.isna(), 'coreg'] = ''

        return RawDataBag.create(sub_df=sub_df, pre_df=pre_df, num_df=num_df)

    @abstractmethod
    def collect(self) -> RawDataBag:
        """
        collects the data and returns a Databag

        Returns:
            RawDataBag: the collected Data

        """

Classes

class BaseCollector (datapath: str, stmt_filter: Optional[List[str]] = None, tag_filter: Optional[List[str]] = None)

Base class for Collector implementations

Expand source code
class BaseCollector(ABC):
    """
    Base class for Collector implementations
    """

    def __init__(self, datapath: str,
                 stmt_filter: Optional[List[str]] = None,
                 tag_filter: Optional[List[str]] = None):
        self.datapath = datapath
        self.stmt_filter = stmt_filter
        self.tag_filter = tag_filter

    def _read_df_from_raw_parquet(self,
                                  file: str,
                                  filters=None) -> pd.DataFrame:
        return pd.read_parquet(os.path.join(self.datapath, f'{file}.parquet'),
                               filters=filters)

    def _get_pre_num_filters(self,
                             adshs: Optional[List[str]],
                             stmts: Optional[List[str]],
                             tags: Optional[List[str]]):
        pre_filter = []
        num_filter = []

        if adshs:
            adsh_filter_expression = ('adsh', 'in', adshs)
            pre_filter.append(adsh_filter_expression)
            num_filter.append(adsh_filter_expression)

        if stmts:
            pre_filter.append(('stmt', 'in', stmts))

        if tags:
            tag_filter_expression = ('tag', 'in', tags)
            pre_filter.append(tag_filter_expression)
            num_filter.append(tag_filter_expression)

        return pre_filter, num_filter

    def _collect(self, sub_df_filter: Tuple[str, str, Union[str, List[str]]]) -> RawDataBag:

        sub_df = self._read_df_from_raw_parquet(file=SUB_TXT,
                                                filters=[sub_df_filter] if sub_df_filter else None)
        adshs = sub_df.adsh.to_list()
        pre_filter, num_filter = self._get_pre_num_filters(adshs=adshs,
                                                           stmts=self.stmt_filter,
                                                           tags=self.tag_filter)

        pre_df = self._read_df_from_raw_parquet(
            file=PRE_TXT, filters=pre_filter if pre_filter else None
        )

        num_df = self._read_df_from_raw_parquet(
            file=NUM_TXT, filters=num_filter if num_filter else None
        )

        # pandas pivot works better if coreg is not nan, so we set it here to a simple dash
        num_df.loc[num_df.coreg.isna(), 'coreg'] = ''

        return RawDataBag.create(sub_df=sub_df, pre_df=pre_df, num_df=num_df)

    @abstractmethod
    def collect(self) -> RawDataBag:
        """
        collects the data and returns a Databag

        Returns:
            RawDataBag: the collected Data

        """

Ancestors

  • abc.ABC

Subclasses

Methods

def collect(self) ‑> RawDataBag

collects the data and returns a Databag

Returns

RawDataBag
the collected Data
Expand source code
@abstractmethod
def collect(self) -> RawDataBag:
    """
    collects the data and returns a Databag

    Returns:
        RawDataBag: the collected Data

    """